第418.章 砥砺前行:新征程的部署(1/2)

作者:用户名5713820

向阳之太空机器人第418.章 砥砺前行:新征程的部署

领导视察过后,向阳犹如被注入了无穷的动力,他的心中满是对公司未来发展的清晰规划与坚定决心。会议室里,灯光通明,向阳召集了公司的核心工程师和高管们,一场关乎公司未来走向的重要会议正在进行。</p>

向阳目光坚定地扫视着众人,声音沉稳而有力:“各位,领导的视察与期望为我们指明了方向。如今,我们要立即行动起来,在太空机器人制造和太空矿产挖掘工作上取得新的突破,为我国的太空事业书写更为辉煌的篇章。”</p>

他首先将目光投向了技术研发团队的负责人李工:“李工,在太空机器人的制造方面,我们要进行全面升级。现有的老鹰一号已经为我们奠定了良好的基础,但我们不能满足于此。未来的太空机器人要更加智能、强大且适应复杂的太空环境。”</p>

李工专注地聆听着,手中的笔随时准备记录。</p>

向阳继续说道:“从外观设计上,要进一步优化其空气动力学性能,使其在穿越大气层时能够减少阻力,降低能量损耗。就像雄鹰在空中翱翔时,凭借其精妙的身体结构轻松穿越气流。我们的机器人在太空中飞行、返回地球时也应如此。采用新型的复合材料,不仅要保证机器人的结构强度足以抵御太空辐射和微小陨石的撞击,还要减轻整体重量,提高能源利用效率。”</p>

“在智能控制系统方面,这是重中之重。我们要加大人工智能算法的研发投入,让机器人能够自主分析和处理太空中的各种复杂情况。例如,在矿产挖掘过程中,它可以根据不同的矿物分布、地形地貌,自动调整挖掘策略和工具使用。当遇到突发的太空环境变化,如太阳风暴爆发时,能够迅速做出反应,寻找最近的安全庇护点,保护自身和所采集的矿产资源。”</p>

“另外,机器人的能源系统也需要革新。研发更加高效的太阳能转换装置,同时探索新型能源存储技术,如量子电池等,确保机器人在远离太阳光照的区域或执行长时间任务时,仍有充足的能源供应。这就好比为机器人装上一颗永远强劲跳动的‘心脏’,无论身处何种恶劣环境,都能持续稳定地工作。”</p>

李工认真记录下每一个要点,然后说道:“向总,我们技术团队已经有了一些初步的设想和方案。在外观设计上,我们计划采用仿生学原理,参考一些善于在高速飞行中保持稳定的鸟类和飞行器结构,结合最新的计算流体力学模拟技术,进行反复优化设计。对于智能控制系统,我们打算与国内顶尖的人工智能研究机构合作,引入他们的最新研究成果,建立一个基于深度学习的太空环境感知与决策模型。在能源系统方面,我们的科研小组正在对一种新型的纳米太阳能薄膜进行实验,这种薄膜的光电转换效率有望比现有的提高 50以上,同时,也在积极关注量子电池的研究进展,争取早日实现技术突破并应用到机器人上。”</p>

向阳满意地点点头,接着对负责太空矿产挖掘工作的王主管说道:“王主管,在太空矿产挖掘工作上,我们也要制定新的标准和流程。”</p>

王主管坐直了身子,眼神专注。</p>

“首先,挖掘工具要进行升级换代。研发更高效、更精准的激光切割和钻探设备,能够快速而精确地分离和采集各种硬度和类型的矿物。例如,对于一些坚硬的金属矿石,激光切割设备能够以高温高能量的激光束瞬间熔化矿石,然后通过特殊的收集装置将其收集起来。对于一些松散的矿物资源,如小行星表面的尘埃状矿物,则可以采用新型的吸附式采集装置,利用静电吸附原理,将矿物颗粒吸附到储存容器中。”</p>

“在挖掘过程中,要充分利用机器人的多传感器融合技术。通过激光雷达、红外线传感器、重力传感器等多种传感器,精确绘制出矿产资源的分布地图,然后根据地图制定最优的挖掘路线,避免无效挖掘和资源浪费。就像一位经验丰富的矿工在地下矿井中,凭借着精准的探测和判断,高效地开采矿石。”</p>

“当矿产采集完成后,机器人的装载和运输环节也要做到万无一失。优化机器人的内部储存结构,根据不同矿物的性质和体积,合理分配储存空间,确保最大化利用装载容量。并且,在装载过程中,要对矿物进行初步的筛选和分类,去除杂质,提高运输回地球后的提炼效率。”</p>

王主管思考片刻后回应道:“向总,我们已经在对新的挖掘工具进行研发测试。激光切割设备在实验室环境下对模拟矿石的切割效果非常理想,我们正在对其进行太空环境适应性改造。吸附式采集装置也已经完成了原理样机的制作,正在进行微重力环境下的性能测试。对于多传感器融合技术,我们已经建立了初步的数据融合算法模型,通过在模拟小行星环境中的测试,能够较为准确地绘制出矿产分布地图。在装载和运输环节,我们设计了一种可调节的模块化储存结构,根据不同任务需求进行灵活组装,同时也在研发一种基于电磁分离原理的初步筛选装置,预计能够在矿物装载过程中去除 80以上的常见杂质。”</p>

本章未完,点击下一页继续阅读。

关闭